Skip to content
Massachusetts Institute of Technology
  • on: May 31, 2023
  • in: NeurIPS

FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-Aligned Scene Flow

  • Cameron Smith
  • Yilun Du
  • Ayush Tewari
  • Vincent Sitzmann
@inproceedings{smith2023flowcam,
    title = { FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-Aligned Scene Flow },
    author = { Smith, Cameron and 
               Du, Yilun and 
               Tewari, Ayush and 
               Sitzmann, Vincent },
    year = { 2023 },
    booktitle = { NeurIPS },
}
  • Copy to Clipboard

Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques.